
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

1 - 6 Calculation of gradients
Find grad f. Graph some level curves f=const. Indicate ∇f by arrows at some points of 
these curves.

1.  f = (x + 1) (2 y - 1)

In[7]:= ClearAll["Global`*⋆"]

In[8]:= e1 = f[x_, y_] = (x + 1) (2 y -− 1)

Out[8]= (1 + x) (-−1 + 2 y)

In[9]:= grad[x_, y_] = Grad[f[x, y], {x, y}]

Out[9]= {-−1 + 2 y, 2 (1 + x)}

Below: the interactive plot was found in Mathematica documentation under ‘Grad’. It seems 
to cover what the problem description requires in terms of finding the gradient at various 
points. The only drawback is that it is not possible to get a gradient value for an exact, 
arbitrary point.



In[10]:= Manipulate[ContourPlot[f[x, y], {x, -−3, 3}, {y, -−3, 3},
Epilog → Arrow[{pt, pt + grad @@ pt}], PerformanceGoal → "Quality",
Contours → 20, PlotRange → {{-−3, 3}, {-−3, 3}, {-−3, 3}},
ImageSize → Medium, ContourLabels → True,
PlotLabel → Style[Framed[{{pt}, {grad @@ pt}}], 11, Blue]],

{{pt, {.01, -−0.1}}, Locator},
FrameLabel → "Click a point to see: the point + its gradient",
SaveDefinitions → True]

Out[10]=

Clicka pointtosee: thepoint+ itsgradient

3.  f = y/x

In[6]:= ClearAll["Global`*⋆"]

f[x_, y_] =
y

x
y

x
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grad[x_, y_] = Grad[f[x, y], {x, y}]

-−
y

x2
,
1

x


Manipulate[ContourPlot[f[x, y], {x, -−8, 8}, {y, -−100, 100},
Epilog → Arrow[{pt, pt + grad @@ pt}], PerformanceGoal → "Quality",
Contours → 20, PlotRange → {{-−8, 8}, {-−100, 100}, {-−140, 140}},
ImageSize → 750, ContourLabels → True,
PlotLabel → Style[Framed[{{pt}, {grad @@ pt}}], 11, Blue],
FrameLabel → "Click a point to see: the point + its gradient",
AspectRatio → .3], {{pt, {.01, -−0.1}}, Locator}, SaveDefinitions → True]

5. f = x4 + y4

ClearAll["Global`*⋆"]

f[x_, y_] = x4 + y4

x4 + y4

grad[x_, y_] = Grad[f[x, y], {x, y}]

4 x3, 4 y3
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Manipulate[ContourPlot[f[x, y], {x, -−3, 3}, {y, -−3, 3},
Epilog → Arrow[{pt, pt + grad @@ pt}], PerformanceGoal → "Quality",
Contours → 20, PlotRange → {{-−3, 3}, {-−3, 3}, {-−3, 3}},
ImageSize → 400, ContourLabels → True,
PlotLabel → Style[Framed[{{pt}, {grad @@ pt}}], 11, Blue], FrameLabel →
"Click a point to see: the point + its gradient", AspectRatio → .97],

{{pt, {.01, -−0.1}}, Locator}, SaveDefinitions → True]

7 - 10 Useful formulas for gradient and Laplacian
Prove and illustrate by an example.

7.  ∇(fn) = n fn-−1 ∇ f

9. ∇(f/g) = (1/g2)(g∇f - g∇g)

11 - 15 Use of gradients. Electric force.
The force in an electrostatic field given by f[x, y, z] has the direction of the gradient. Find 
∇f and its value at P.
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11 - 15 Use of gradients. Electric force.
The force in an electrostatic field given by f[x, y, z] has the direction of the gradient. Find 
∇f and its value at P.

11. f = xy, P: (-4, 5)

ClearAll["Global`*⋆"]

grad[x_, y_] = Grad[x y, {x, y}]

{y, x}

grad[-−4, 5]

{5, -−4}

13. f = Logx2 + y2, P : {8, 6}

ClearAll["Global`*⋆"]

grad[x_, y_] = GradLogx2 + y2, {x, y}


2 x

x2 + y2
,

2 y

x2 + y2


N[grad[8, 6]]

{0.16, 0.12}

15. f = 4 x2 + 9 y2 + z2, P : {5, -−1, -−1}

ClearAll["Global`*⋆"]

grad[x_, y_, z_] = Grad4 x2 + 9 y2 + z2, {x, y, z}

{8 x, 18 y, 2 z}

grad[5, -−1, -−11]

{40, -−18, -−22}

18 - 23 Velocity fields
Given the velocity potential f of a flow, find the velocity v = ∇f of the field and its value 
v[P] at P. Sketch v[P] and the curve f = const passing through P.

19. f = Cos[x] Cosh[y], P : 
π

2
, Log[2]

ClearAll["Global`*⋆"]
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velocity[x_, y_] = Grad[Cos[x] Cosh[y], {x, y}]

{-−Cosh[y] Sin[x], Cos[x] Sinh[y]}

velocity
π

2
, Log[2]

-−
5

4
, 0

StreamPlotvelocity[x, y], {x, -−3, 3}, {y, -−3, 3}, StreamPoints →


π

2
, Log[2], Green, {{0.5, -−1}, Red}, Automatic, ImageSize → 200

-−3 -−2 -−1 0 1 2 3

-−3

-−2

-−1

0

1

2

3

21. f = ⅇx Cos[y], P : 1,
1

2
π

ClearAll["Global`*⋆"]

velocity[x_, y_] = Grad[ⅇx Cos[y], {x, y}]

{ⅇx Cos[y], -−ⅇx Sin[y]}

velocity1,
π

2


{0, -−ⅇ}
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StreamPlotvelocity[x, y], {x, -−3, 3}, {y, -−3, 3}, StreamPoints →

{{0, -−ⅇ}, Green}, 0,
π

2
, Red, Automatic, ImageSize → 200

-−3 -−2 -−1 0 1 2 3

-−3

-−2

-−1

0

1

2

3

23.  At what points is the flow in problem 21 horizontal?

StreamPlot[velocity[x, y], {x, -−5, 5}, {y, -−5, 5},
StreamPoints → {{{{0, -−ⅇ}, Green}, {{0, 0}, Red}, {{0, π}, Orange},

{{0, -−π}, Magenta}, Automatic}}, ImageSize → 400]

-−4 -−2 0 2 4

-−4

-−2

0

2

4

Above: The only point I found that was definitely horizontal when plotted  was (0, 0). The 
text answer is (0, ±n π), so it is a  more general formula. A couple of these identified desig-
nated points are shown above. 

24 - 27 Heat flow.
Experiments show that in a temperature field, heat flows in the direction of maximum 
decrease of temperature T. Find this direction in general and at the given point P. Sketch 
that direction at P as an arrow.
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24 - 27 Heat flow.
Experiments show that in a temperature field, heat flows in the direction of maximum 
decrease of temperature T. Find this direction in general and at the given point P. Sketch 
that direction at P as an arrow.

25. T =
z

x2 + y2
, P : (0, 1, 2)

ClearAll["Global`*⋆"]

teef[x_, y_, z_] =
z

x2 + y2

z

x2 + y2

teef[0, 1, 2]

2

gradT[x_, y_, z_] = Grad-−
z

x2 + y2
, {x, y, z}


2 x z

x2 + y22
,

2 y z

x2 + y22
, -−

1

x2 + y2


gradT[0, 1, 2]

{0, 4, -−1}

gradT[0, 3, 0]

0, 0, -−
1

9


{0, 3, 2} -− %

0,
77

27
,
19

9


The minus sign was put into the Grad expression above because I want not the maximum 
increase direction but the maximum decrease direction. The blue cell shows that it works 
with the problem point, yielding the text answer. The s.m. approached the problem of 
plotting by considering the isotherms at z = 2, the z-plane of the problem point. I copied 
this approach.
gradX[x_, y_] = {x, y, 2}

{x, y, 2}

Above: the function gradX is designed to insert the z = 2 coordinate into any point pt in the 
interactive plot.
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gradX[0, 1]

{0, 1, 2}

gradb[x_, y_] = Grad-−
2

x2 + y2
, {x, y}


4 x

x2 + y22
,

4 y

x2 + y22


Above: the function gradb is designed to mimic gradT in 2 dimensions. It reproduces the 
direction of the gradient produced by gradT projected onto the z=2 plane parallel to the xy-
plane.
gradb[0, 1]

{0, 4}

Above: testing gradb on the problem point.

f[x_, y_] = -−
2

x2 + y2

-−
2

x2 + y2

f[1, 1]

-−1
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Manipulate[ContourPlot[f[x, y], {x, -−4, 4}, {y, -−4, 4},
Epilog → {Arrow[{pt, pt + gradb @@ pt}], Green, PointSize[Medium],

Point[{0, 1}]}, PerformanceGoal → "Quality", Contours → 20,
PlotRange → {{-−4, 4}, {-−4, 4}, {-−4, 4}}, ImageSize → 400,
Contours → 5, ContourLabels → True, PlotLabel →
Style[Framed[{{gradX @@ pt}, {gradT @@ gradX @@ pt}}], 11, Blue],

FrameLabel → "Temp field, showing xyz-−gradient for z=2
(with problem point Green)", AspectRatio → .97],

{{pt, {.01, -−0.1}}, Locator}, SaveDefinitions → True]

pointt = {1, 1, -−1}

{1, 1, -−1}

grad22[x_, y_] = Grad-−
2

x2 + y2
, {x, y}


4 x

x2 + y22
,

4 y

x2 + y22
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grad22[0, 3]

0,
4

27


ShowPlot3D-−
2

x2 + y2
, {x, -−4.5, 4.5}, {y, -−4.5, 4.5},

ImageSize → 300, PlotRange → {-−4, 4}, AxesLabel → {x, y, z},

Graphics3DPointSize[Large], Red, Point[{0, 3, 0}],

Black, ArrowTube{0, 3, 0}, 0,
77

27
, 5, .03

Arrow[Tube[{{0, 0, -−4}, {0, 0, 4}}, .01]]

Below: some failed experiments trying to get the problem to show up in three dimen-
sions. The ListPointPlot3D try does show how to make and use some tables as input to a 
plot.
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data1 = FlattenTable
2 x z

x2 + y22
,

2 y z

x2 + y22
, -−

1

x2 + y2
,

{x, -−3, -−0.1, 0.5}, {y, -−3, 3, 0.5}, {z, -−3, 3, .5}, 1;

data2 = FlattenTable
2 x z

x2 + y22
,

2 y z

x2 + y22
, -−

1

x2 + y2
,

{x, .1, 3, 0.5}, {y, -−3, 3, 0.5}, {z, -−3, 3, .5}, 1;

data3 = FlattenTable
2 x z

x2 + y22
,

2 y z

x2 + y22
, -−

1

x2 + y2
,

{x, -−3, 3, 0.5}, {y, -−3, -−.1, 0.5}, {z, -−3, 3, .5}, 1;

data4 = FlattenTable
2 x z

x2 + y22
,

2 y z

x2 + y22
, -−

1

x2 + y2
,

{x, -−3, 3, 0.5}, {y, .1, 3, 0.5}, {z, -−3, 3, .5}, 1;

dataall = Union[data1, data2, data3, data4];

ListPointPlot3D[dataall,
DataRange → {{0, 10}, {0, 10}}, PlotRange → {-−30, 30}]

0

5

10
0

5

10
-−20

0

20
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ContourPlot3D-−
z

x2 + y2
, {x, -−.5, 1.5}, {y, .2, 3}, {z, -−400, 400}

ContourPlot3D-−
z

x2 + y2
, {x, -−.5, 1.5}, {y, .2, 3}, {z, -−400, 400}

27.  CAS project. Isotherms. Graph some curves of constant temperature (“isotherms”) 
and indicate directions of heat flow by arrows when the temperature equals (a) x3 - 3xy2, 
(b) Sin[x] Sinh[y], and (c) ⅇx Cos[y].

ClearAll["Global`*⋆"]

grad[x_, y_] = Gradx3 -− 3 x y2, {x, y}

3 x2 -− 3 y2, -−6 x y
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ManipulateContourPlotx3 -− 3 x y2, {x, -−2, 2}, {y, -−2, 2},
Epilog → Arrow[{pt, pt + grad @@ pt}], PerformanceGoal → "Quality",
Contours → 20, PlotRange → {{-−2, 2}, {-−2, 2}, {-−3, 3}},
ImageSize → Medium, ContourLabels → Automatic,
PlotLabel → Style[Framed[{{pt}, {grad @@ pt}}], 11, Blue],

{{pt, {.01, -−0.1}}, Locator},
FrameLabel → "Click a point to see: the point + its gradient",
SaveDefinitions → True

Clicka pointtosee: thepoint+ itsgradient
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Plot3Dx3 -− 3 x y2, {x, -−2, 2}, {y, -−2, 2}, ImageSize → 300

ClearAll["Global`*⋆"]

grad[x_, y_] = Grad[Sin[x] Sinh[y], {x, y}]

{Cos[x] Sinh[y], Cosh[y] Sin[x]}
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Manipulate[ContourPlot[Sin[x] Sinh[y], {x, -−2, 2}, {y, -−2, 2},
Epilog → Arrow[{pt, pt + grad @@ pt}], PerformanceGoal → "Quality",
Contours → 20, PlotRange → {{-−2, 2}, {-−2, 2}, {-−3, 3}},
ImageSize → Medium, ContourLabels → Automatic,
PlotLabel → Style[Framed[{{pt}, {grad @@ pt}}], 11, Blue]],

{{pt, {.01, -−0.1}}, Locator},
FrameLabel → "Click a point to see: the point + its gradient",
SaveDefinitions → True]

Clicka pointtosee: thepoint+ itsgradient
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Plot3D[Sin[x] Sinh[y], {x, -−2, 2}, {y, -−2, 2}, ImageSize → 300]

ClearAll["Global`*⋆"]

grad[x_, y_] = Grad[ⅇx Cos[y], {x, y}]

{ⅇx Cos[y], -−ⅇx Sin[y]}
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Manipulate[ContourPlot[ⅇx Cos[y], {x, -−2, 2}, {y, -−2, 2},
Epilog → Arrow[{pt, pt + grad @@ pt}], PerformanceGoal → "Quality",
Contours → 20, PlotRange → {{-−2, 2}, {-−2, 2}, {-−3, 3}},
ImageSize → Medium, ContourLabels → Automatic,
PlotLabel → Style[Framed[{{pt}, {grad @@ pt}}], 11, Blue]],

{{pt, {.01, -−0.1}}, Locator},
FrameLabel → "Click a point to see: the point + its gradient",
SaveDefinitions → True]

Clicka pointtosee: thepoint+ itsgradient
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ShowPlot3D{ⅇx Cos[y]}, 
1 + x

ⅇ
+
Cos[1]

ⅇ
+ (1 + y) Cos[1],

{x, -−2, 2}, {y, -−2, 2}, ImageSize → 300,
AxesLabel → {x, y, "z"}, BoxRatios → Automatic,

Graphics3DPointSize[Large], Green, Point-−1, -−1, ⅇ-−1 Cos[-−1],

Black, Arrowheads[{{.02, 1}}], ArrowTube-−1, -−1, ⅇ-−1 Cos[-−1],


1

ⅇ
-− 1, Cos[1] -− 1, -−1 + ⅇ-−1 Cos[-−1], .015

According to MathWorld, the equation for a tangent plane is: 
z = f(x0, y0) + fx(x0, y0) (x-− x0) + fy(x0, y0) (y-− y0). At the point (-1,-1),
z = ⅇ-−1 Cos[-−1] + ⅇ-−1 (x + 1) + Cos[-−1] (y + 1)
1 + x

ⅇ
+
Cos[1]

ⅇ
+ (1 + y) Cos[1]

gradz = Grad[z, {x, y}]


1

ⅇ
, Cos[1]

As the above shows, this works.

Again, from MathWorld, the equation for a normal vector at a point x0, y0 on a surface 
z = f(x, y) is given by

N =
fx(x0, y0)
fy(x0, y0)

-−1
,

(the vector) where fx and fy are partial derivatives.

9.7 Gradient of a Scalar Field. Directional Derivative 395.nb     19



Again, from MathWorld, the equation for a normal vector at a point x0, y0 on a surface 
z = f(x, y) is given by

N =
fx(x0, y0)
fy(x0, y0)

-−1
,

(the vector) where fx and fy are partial derivatives.

nN = D
1 + x

ⅇ
+
Cos[1]

ⅇ
+ (1 + y) Cos[1], {x},

D
1 + x

ⅇ
+
Cos[1]

ⅇ
+ (1 + y) Cos[1], {y}, -−1


1

ⅇ
, Cos[1], -−1

Adding this to the arrow starting point works now, thanks to a Stack Exchange tip on the 
use of BoxRatio to get the axes equalized.

*********************************************************************************
**********

All the problems after no. 29 were omitted from the PDF version of the text. 

33. Find the normal to the ellipsoid surface 6 x2 + 2 y2 + z5 = 225, first in general expres-
sion, then at the point P = (5, 5, 5). Find the unit normal.

ClearAll["Global`*⋆"]

e1 = 6 x2 + 2 y2 + z2

6 x2 + 2 y2 + z2

Above: It looks like the constant should be dropped, it just gums up the works.
e2[x_, y_, z_] = Grad[e1, {x, y, z}]

{12 x, 4 y, 2 z}

e3 = e2[5, 5, 5]

{60, 20, 10}

e44 = e2[0, 0, 15]

{0, 0, 30}

e4 = Norm[e3]

10 41

e45 = Norm[e44]

30
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e5 =
e3

e4

e51 =
e44

e45

{0, 0, 1}

ShowPlot3D 225 -− 6 x2 -− 2 y2 ⩵ 0, {x, 0, 9},

{y, 0, 9}, AxesLabel → Automatic, BoxRatios → Automatic,

Graphics3DPointSize[Large], Red, Point[{5, 5, 5}],
Black, Arrowheads[{{.02, 1}}],

ArrowTube{5, 5, 5}, 5 +
6

41
, 5 +

2

41
, 5 +

1

41
, .03

e7[x_, y_, z_] = Grad 225 -− 6 x2 -− 2 y2 -− z, {x, y, z}

-−
6 x

225 -− 6 x2 -− 2 y2
, -−

2 y

225 -− 6 x2 -− 2 y2
, -−1

e7[5, 5, 5]

{-−6, -−2, -−1}

aa =
6

225
/∕/∕ N

0.163299
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bb =
2

225
/∕/∕ N

0.0942809

cc =
1

225
/∕/∕ N

0.0666667

lgrad[u_, v_] =
Grad[{.1633 Cos[u] Sin[v], .0943 Sin[u] Sin[v], .0666 Cos[v]}, {u, v}]

{{-−0.1633 Sin[u] Sin[v], 0.1633 Cos[u] Cos[v]},
{0.0943 Cos[u] Sin[v], 0.0943 Cos[v] Sin[u]}, {0, -−0.0666 Sin[v]}}

lgrad[.2, .2]

{{-−0.00644537, 0.156855}, {0.0183611, 0.0183611}, {0, -−0.0132314}}

6

41
,

2

41
,

1

41

225
15

ShowParametricPlot3D[
{.1633 Cos[u] Sin[v], .0943 Sin[u] Sin[v], .0666 Cos[v]}, {u, 0, 2 π},
{v, 0, π}, PlotStyle -−> Opacity[.4], BoxRatios → Automatic],

Graphics3DPointSize[Large], Red, Point

(.1633)2 5, (.0943)2 5, (.0666)2 5, Black, Arrowheads[{{.02, 1}}],

ArrowTube(.1633)2 5, (.0943)2 5, (.0666)2 5,

(.1633)2
6

41
, (.0943)2

2

41
, (.0666)2

1

41
, .001

In the parametric form, it is hard to see the arrow angle clearly, but it might be right.
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